Thursday, July 30, 2020

Academic Requirements for Structural Engineers

Academic Requirements for Structural Engineers

Employers require structural engineers to have a college degree in the discipline or comparable areas such as civil engineering. Most professionals have acquired a Master’s Degree or even a Ph.D. to distinguish themselves in the marketplace. Undergraduate students complete coursework in materials, algorithms, design and mechanics, among other concepts. Advanced academic training in the field facilitates a candidate’s ability to receive management positions in the industry as well as university teaching roles. At the Master’s Degree level, students complete classwork in advanced materials design principles, structural mechanics and seismology. For Ph.D. students, coursework includes classes in computer modeling, advanced renovation and restoration as well as risk analysis.

Organizations such as Structural Engineers Association, the Structural Engineering Institute, and the International Association for Bridge and Structural Engineering (IABSE) are a few of the organizations dedicated to fostering the development of professionals in the field. They organized congresses throughout the world to educate and bring together professionals in the industry to trade knowledge and share opportunities and best practices, thereby expanding the breadth and awareness around the industry. Moreover, they feature digital libraries of materials, including journal publications and links to online resources that enhance the toolbox of practitioners. Affiliated organizations like the

Read More: jobs that require a+ certification

Wednesday, July 29, 2020

Biomedical Engineering Degree

Biomedical Engineering Degree

Biomedical engineers design prosthetic limbs, artificial organs, and regenerate tissue. They create drugs and pharmaceuticals, collect and analyze biological data, and design life-saving equipment. They work with universities, hospitals, labs, government, industry, and regulatory agencies.

They work with doctors and patients seeking solutions to physical as well as physiological problems. It is important to incorporate into their own specialties any changes in related fields, so engineers scramble to stay abreast as technology rapidly evolves.

Universities teaching advanced levels of biomedical engineering commonly offer post-doctorate and research career opportunities. For example here is a list of research opportunities available through Florida A&M University:

  • Tissue Engineering for Bone and Cartilage Replacement
  • Advanced Polymeric Materials Characterization and Rheology
  • Magnetic Resonance Imaging of Cells, Tissues, and Organisms
  • Plasma Reaction Engineering for Pollution Control and Disinfection
  • Biomass Conversion to Energy by Enzymatic/Catalytic/Thermal/Plasma Methods
  • Advanced Computational Methods in Materials, Catalysis, and Transport
  • Solid State Materials Synthesis and Characterization

Tuesday, July 28, 2020

Electronic Engineer Career and Outlook

Electronic Engineer Career and Outlook

According to the U.S. Bureau of Labor Statistics (BLS), there were about 294,000 electronic engineers employed in 2010. About 14 percent worked for the federal government, 11 percent were employed with wired telecommunications carriers and electronic manufacturing firms and 8 percent held jobs in navigational, electromedical instruments manufacturing, architectural and engineering related services.
The BLS also reports that there will be slower than average growth for electrical engineers. There is only a 6 percent expected increase in the demands for these professionals from 2010 until 2020. This is mainly because of the decline in the manufacturing industry where they are mostly employed.
However, there are good projections for electrical engineers who work on an as-needed basis rather than those who are permanently employed. Similarly, there is a good future ahead for electrical engineers who specialize in research and development.
In 2010, electrical engineers earned as much as $84,540 in median annual wages according to the BLS. The top 10 percent highest earners received about $128,610 while the bottom 10 percent earners took home about $54,030. Among the highest paying electrical engineer jobs in industries employing the largest number of these professionals come from semiconductor and electronic manufacturing companies.
Employees in these firms usually earn about $92,070 on average. This was followed by scientific research and development firms that paid $90,970 in median annual wages.
Read More: a+ jobs

Monday, July 27, 2020

Thermal Engineering Career

Thermal Engineering Career

Professionals in the field of thermal engineering strive to develop more efficient means for transferring energy into more practical means, drawing on their expertise in heat transfer. Within an industrial context, these engineers work on solutions for fuels, exploring forms of chemical, electrical and mechanical energy. These professionals find specialization in the fields of high technology, solar power, oil and gas, power companies, as well as temperature control systems. Transforming power grids to create more affordable electricity has become one of the most popular fields utilizing the expertise of thermal engineers.
If you want to know more about becoming a thermal engineer, contact the schools listed here to learn more. It’s important to talk to as many schools as you can to determine the best way forward.
Thermal engineers dedicate their efforts to refining electronics systems and safety applications. They collaborate extensively with groups of hardware and software experts at all stages of the product cycle from initial design through the manufacturing and installation of products and systems. In this capacity, they may develop models for industrial assets rooted in computer projects for optimizing source materials and functionality.

Friday, July 24, 2020

Real Life Nanoengineers Making an Impact

Real Life Nanoengineers Making an Impact

Nanoengineers not only impact the way people live and think on Earth, but also may provide the key to further space exploration. As both the European Space Agency and NASA strive to execute manned missions to other planets like Mars as well as develop more advanced spacesuits and micro-shuttles, nanotechnology will serve an essential role in pushing these endeavors into reality. Nanoengineers will be called upon to reduce the weight and sheer volume of components needed to explore other worlds, thereby reducing the costs associated with such expeditions. This may well enable countries with smaller economies to venture into space. For example, nano engineers at NASA have created sensors rooted in nanotechnology for use on the International Space Station (ISS). The sensor is the size of a postage stamp, yet has the capacity to detect impurities in an astronaut’s air supply, and may well be utilized on potential roving explorations on Mars to gather samples from the red planet. Furthermore, technology companies like Apple have used nanotechnology and professionals to develop their tablet hardware products and musical devices like the iPad mini and iPod nano. The iPod nano, for instance, features a compact, design that clips onto a person’s lapel making it easy for customers to listen to music while being unencumbered by a weighty product. The sleek, minimalist design associated with Apple products illuminates how the field of study bridges the gap between cutting-edge technology and providing useful and lucrative consumer products. As nanotechnology grows with the expertise of its practitioners, its impact will be seen throughout all spheres of human life.

Thursday, July 23, 2020

Automotive Engineering Career

Automotive Engineering Career

Engineering students should choose a college or university that is recognized by the Accreditation Board for Engineering and Technology (ABET). In evaluating an automotive engineer job applicant, some employers consider the reputation of the engineering school that the undergraduate attended more than any other factor. However, most employers focus more on the undergraduate's grades and amount of his or her hands-on experience. Consequently, any college or university that promotes national design and racing competitions in which the student gains hands-on experience would be a good choice. Students should also look for internships or other opportunities that will force them to apply coursework to real-life situations. Over time, the school will not be as important as the experience and skills the engineering the undergraduate offers.

Bachelor’s Degree

Because not many schools offer a bachelor’s degree program in automotive engineering, most aspiring automotive students enter a mechanical engineering program. This is because automotive engineering is an offshoot of mechanical engineering and therefore, many of the classes are the same. However, some schools offer mechanical engineering programs that include automotive engineering courses such as:
  • Automobile dynamics
  • Automotive electronics
  • Engine parts
  • Diesel engine theory
  • Alternative energy sources
  • Fuel cell systems
  • Powertrain dynamics

Wednesday, July 22, 2020

Aerospace Engineering Degrees

Aerospace Engineering Degrees

Aerospace engineers research, analyze, design, synthesize, develop and test aircraft, spacecraft and weapons. Aerospace engineers who focus on aircraft are called aeronautical engineers; those who concentrate on spacecraft are called astronautical engineers.
They are essentially concerned with the aerodynamic properties of flight vehicles, such as airfoil, control surfaces, lift and drag.
Aerospace engineer can specialize in areas such as structural design, propulsion, navigation, guidance and control systems, communications or defense systems.
They may also specialize in a particular type of equipment, including commercial and military planes and jets, helicopters, space shuttles, satellites, space vehicles, missiles or or combat aerial vehicles.
Aerospace engineers can develop a special expertise in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, avionics or guidance and control systems.

Tuesday, July 21, 2020

Computer Engineering Career and Work Nature

Computer Engineering Career and Work Nature


Most people own or have ready access to a personal computer. These marvels of modern technology have revolutionized everything from the way we get our news to how we communicate with friends and relatives to how we entertain ourselves. However, the traditional PC or laptop is only one type of computer. Virtually every modern machine and process is computer-controlled. Some computers are tiny, as in the smallest cell phones and MP3 players.
Other computers are actually massive networks of thinking machines, working on terabytes of data and cranking out billions of calculations per second. The common factor making these machines possible is the Computer Engineer. Computer Engineering differs from Software Engineering and Computer Science in that it focuses on the actual hardware that’s responsible for performing the work. Software is the set of instructions used by a computer to get work done.
Without Computer Engineers designing the hardware platform it runs on, software would be so many useless bits of data. While they need to know the principles of software operation, Computer Engineers are responsible for designing the components of a computing system. Whether that computer is in the Stealth Bomber or under your car’s hood, all computers have similar components and functions, varying mostly in size, shape and application.
Computer Engineers design everything from the Central Processing Unit to primary and secondary memory storage to input and output methods. Even if they are using off-the-shelf components, they’re responsible for making sure the integration works flawlessly.

Monday, July 20, 2020

Thermal Engineering Career

Thermal Engineering

Professionals in the field of thermal engineering strive to develop more efficient means for transferring energy into more practical means, drawing on their expertise in heat transfer. Within an industrial context, these engineers work on solutions for fuels, exploring forms of chemical, electrical and mechanical energy. These professionals find specialization in the fields of high technology, solar power, oil and gas, power companies, as well as temperature control systems. Transforming power grids to create more affordable electricity has become one of the most popular fields utilizing the expertise of thermal engineers.
If you want to know more about becoming a thermal engineer, contact the schools listed here to learn more. It’s important to talk to as many schools as you can to determine the best way forward.
Thermal engineers dedicate their efforts to refining electronics systems and safety applications. They collaborate extensively with groups of hardware and software experts at all stages of the product cycle from initial design through the manufacturing and installation of products and systems. In this capacity, they may develop models for industrial assets rooted in computer projects for optimizing source materials and functionality.

Software Engineering Degrees

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a...