Friday, March 19, 2021

Software Engineering Degrees


Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a relatively new discipline, but in today’s increasingly interconnected world, it is becoming more and more important.

Software Engineering differs from Computer Science or Web Design in that you are formulating how the overall software system functions, and how it works within its intended hardware environment.

Software Engineers are responsible for every phase of a development project, not just for writing the computer code. Upon the initiation of a project, they make sure requirements are documented and validated.

This assures the entire project is working toward the correct goal. They then move on to system design, often overseeing the creation of software prototypes to present to clients for additional validation.

Once the design is solid, Software Engineers manage the overall development effort to make sure the pieces are coming together as planned. Finally, they create and oversee test cases which assure system functionality is complete and traceable to the requirements generated at the time of project initiation.

Software Engineering is the discipline that makes sure computer systems are developed methodically and result in building the right product with quality built in from the beginning.

Read More: architecture and systems engineering

Thursday, March 18, 2021

Real Life Example of a Structural Engineer


John Shmerykowsky , an experienced structural engineer, has witnessed first-hand the rewards of the career as well as the technological transformations that are reshaping the industry. As a principal of his own firm, he spearheaded the work completed at the Phillip Morris building in New York City at 120 Park Avenue. He works primarily as a consultant to architects, while he completed his education at Fountainbleu in Paris. Shmerykowsky has developed his reputation by completing projects that feature unique challenges. For example, the Phillip Morris project possessed a structure that was one quarter positioned over functioning subway tracks that were employed to transport garbage. His team had to develop an approach that would enable them to complete work on the building, while enabling the tracks to run without interruption. He also developed sustainable features in the building including windows conducive to harnessing natural light. Over time, he has seen how vital digital applications have become to the industry, whereby he encourages all aspiring professionals to become comfortable with the technology as well as current ones to reman vigilant in keeping current on computer-based trends. His firm Shmerykowsky Consulting Engineers currently seeks structural engineers to add to their team to help realize current projects for their portfolio of clients. Like the company’s founder, the firm seeks engineering professionals that possess a diverse range of technical, business, interpersonal and communication skills that are tantamount to executing current and future structures throughout the world.

Read More: business solution architect roles and responsibilities

Monday, March 15, 2021

Main Focus of Petroleum Engineering


Petroleum engineering deals with the production of hydrocarbons—the products of crude oil and natural gas. This above-ground field focuses on recovering fossil fuels from below ground in the most economical and environmentally friendly ways.

Trained to understand the physical behavior of oil, water, and gas deep in porous rock and under high pressure, these skilled engineers make reliable estimations of the volume of a resource's reservoir.

They form teams with geologists to determine the best methods for depleting reservoirs. Related disciplines include drilling, reservoir simulation, well engineering, petroleum geology, and geophysics.

Since the beginning of petroleum engineering, in the early 20th century, many easily accessed deposits have been depleted. Fuel harvesting has become more dependent on fresh technologies incorporating horizontal drilling and computer modeling.

Drilling in deserts and in deep waters requires today's engineers to have expertise in intelligent systems, geomechanics, and hydraulics, naming only a few things on their growing list of knowledge bases.

Read More:: solution architect goals

Nuclear Engineering Degree through Online Study


A number of colleges and universities offer online nuclear engineering studies toward master's and doctoral degrees. Some of these universities include, but are not limited to, Penn State, MIT, and Ohio State.

Online nuclear engineering degrees open a wide range of opportunities for students, at both graduate and postgraduate levels. A graduate degree in nuclear engineering opens doors to better job opportunities.

The Bachelor of Science degree in Nuclear Science and Engineering is a basic four-year course, but a specialized five-year course can incorporate a master's degree. The Ph.D. degree generally adds two years of study beyond the masters.

Because nuclear science and engineering have such a broad range, graduates can be prepared for a wide variety of careers. Today's graduates enjoy research and teaching jobs at universities; they work at power plants and in government and industrial laboratories. They have launched LED lighting companies. They manage hedge funds, create interactive science and art displays, design new reactors, improve aircraft components, attend medical school, and design domestic energy policies.

Bureau of Labor statistics for 2011 show nuclear engineers earning a mean annual wage of $105,160, a bottom average wage of $67,100, and a top wage of $147,670. Rise in employment was estimated at 9.4 percent.

Read More: solution architect vs application architect

Thursday, March 11, 2021

Discover the World of Nanoengineering


Nanoengineering encompasses the practice of the profession on a nanoscale, which stems from the nanometer unit of measure, equivalent to one billionth of a meter. Within the industry, nanoengineering is synonymous with practices of nanotechnology, whereby it focuses on the engineering component of a given technology rather than the scientific side. Nanotechnology professionals have become prized professionals in the current marketplace for their skills and training dealing with microscopic applications.

From the automobile and energy industry to healthcare and technology firms, companies around the world eagerly seek to attract and develop these professionals. Within these realms, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are the dominant techniques of the field used to solve problems and originate new technologies. Both techniques pivot on generating microscopic probes to manipulate and track the movement of atoms with the idea of capturing something significant to translate into real world applications such as revolutionary manufacturing materials or new pharmaceutical products.

To learn more about becoming a nanoengineer, contact the schools below to request more information. We recommend contacting multiple schools to compare programs.

Professionals in this field often perform a medley of duties depending on the industry they work in and/or their educational backgrounds. In biosciences, nanoengineers dedicate their time to developing new medical device products and ways to enhance existing ones. From a construction viewpoint, these experts investigate and evaluate the development of new materials to develop more sustainable and durable building products and materials. Automotive companies employ these engineers to develop more efficient processes within an engine system and materials to build and pad vehicle systems and interiors. Regardless of the field, these engineers choose to employ their skills and talents, the field requires immense patience and attention to detail. Refining the effective use of STMs and AFMs, critical to the development of new technologies and breakthroughs, often proves to be challenging for most practitioners in the field. Powerful microscopes with exceptionally fine silicon tips are employed to monitor the nano activity harnessed to develop new applications. Establishing a suitable tip, though, can sometimes take seven days alone. Nevertheless, global firms like Abbott Laboratories, Tesla, Exxon-Mobil, and Sony are a few of the global firms capitalizing on the potential of nanotechnology.

Read More: architect description

Wednesday, March 10, 2021

Real Example of Molecular Engineering in Action


As it is an emerging field with seemingly unlimited potential, the field of molecular engineering has stirred some controversy regarding its implications ethically, environmentally and socially. At the same time, the science promises to exert its influence in all spheres of human life around the world. In the medical devices industry, a recent case study of Ortho Molecular illuminated the powerful potential of this form of engineering. The firm employs a ProScan metal detection system, rooted in molecular engineering, which was developed by Advanced Detection Systems (ADS). This ensures the quality of all of the products in its manufacturing system. The device memorizes the product sensory impulse, and then recalls it as it travels through the scanner, thereby ensuring the finished product meets all Food and Drug Administration health and safety codes. The ProScan application evaluates the entire device to identify the presence of any metal. If it is detected, a signal occurs compelling a check of the entire batch of deliverables. The system enables quality control staff to quickly identify integrity breaches and remedy them seamlessly. Molecular engineering was critical in developing this acute detection system application. Ortho Molecular purchased several of the ADS systems for its medical device product manufacturing processes because of its sensitivity and efficiency.

The Society for Molecular Biology and Evolution is one of many associations dedicated to the advancement of professionals and the field as a whole. Related organizations like the National Society of Professional Engineers (NSPE) and the Technology Student Association (TSA) endeavor to accomplish these same goals by organizing meetings throughout the globe that expand the discourse on technological innovations and best practices in the industry. They feature vast digital libraries of industry and academic publications and related resources. Mentoring and networking outlets exist as well that bolster a members or aspiring professional’s ability to grow within the field of molecular engineering. Practitioners should also consult social media outlets and an array of associations in the field founded by universities throughout the country. University-based alumni associations and career placement centers possess further resources and outlets for students to learn of what companies seek as well as on-campus recruiting initiatives. Companies such as Google, Boeing, Genentech, and Bayer Pharmaceuticals have employed these avenues to recruit new talent to their efforts. Based on data from the U.S. Bureau of Labor Statistics (BLS), molecular and chemical engineers expect a job growth rates of 6 percent to the year 2020. Illinois, California, New York, and Texas offer the most opportunities for candidates. Data provided by O*Net indicates that engineers in this field earn a yearly salary of $92,680.

Read More: solution architect goals and objectives

Tuesday, March 9, 2021

Mining and Geological Engineering


Mining and geological engineering focuses primarily on the study and design of creating safe and effective means to extract metals and minerals for industrial, commercial and scientific purposes. Requiring education and understanding not only of mining principles and practices, engineers in this field are also expected to have an advanced and dynamic understanding of geological sciences, such as soil and mineral composition, surveying, prospecting and exploratory geological research. In addition to extracting the more conventional materials such as oil, precious and industrial metals and rarer gems and materials, many new advancements in information technology have expanded the role of geological engineering to search and mine for other materials, such as the dozens of special minerals and materials used in computer, tablet and smart phone construction.

At EducatingEngineers, we want you to understand the complexities of engineering careers and what it takes to succeed in your education. Please read the information below to learn more. And contact the schools in our directory to get started!

Employed by governments, major corporations, non-profit organizations and scientific/academic research institutions, geological engineers play pivotal roles in everything from industrial production of materials and energy, to advancing scientific understanding of the material composition of the Earth. Because of the numerous and varied functions for geological engineering and the substantial technological advancements made in the field itself, the role of the engineer in respect to mining and geological research continues to evolve, finding new and interesting applications for the science with each passing year.

Read More: solution architect manager

Sunday, March 7, 2021

Careers for Mechatronic Engineers


Though the US Bureau of Labor Statistics (BLS) does not maintain employment or salary data on mechatronics engineers, it does have statistics for the related industries of a mechanical and electrical engineer. According to research at the BLS, demand for these types of professionals should likely experience five percent growth until at least 2022. Moreover, the bureau foresees electrical and electronics engineers to experience four percent growth in their career prospects. In contrast, electrical and electronic engineering technicians will likely see little or no growth over the time period. Based on O*Net salary data, mechatronic engineers earned a median salary of $92,680. In a state comparison for earning potential, the BLS found that mechanical engineering professionals in California earned the highest salary at $112,100. Professionals in Texas received $98,030 in yearly salary compensation. Engineers in New York and Illinois earned approximately $95,020 in pay annually.

Companies like Harris & Bruno have formed partnerships with schools like Sierra College in California to seamlessly integrate students from the classroom to apply their knowledge to real-world mechatronics applications. Markus Fredrickson, a Sierra College student, works part-time in manufacturing at Harris & Bruno. When he first began his education, he did not have a clear direction for his career. However, the collaborative approach of his university and the private enterprise has provided him with direction and a practical outlet for his skills. He described his work with the firm as a seamless experience bridging his classroom education with real-world scenarios. Many of the parts and systems he encountered in his classroom work echoed the very same components and problems he was asked to solve on the job. Ultimately, he found his theoretical and practical education invaluable in facilitating his career advancement. These types of programs reflect the potential for students and companies as they integrate their resources and expertise in growing the industry. This boasts well for both current and prospective professionals in the field and the industry as a whole as more evolutions occur in terms of technology and human resources.
If you would like to learn more about mechatronics or other areas of engineering, contact the schools in our directory to receive more helpful information. We recommend contacting multiple schools to be sure you choose the best one for you!

Read More: solution architect roles and responsibilities

Thursday, March 4, 2021

Mechanical Engineering Education

 The core curriculum of mechanical engineering at any engineering school accredited by the Accreditation Board of Engineering and Technology (ABET) consists of:

  • Statics: The study of the effect of forces on a stationary body.
  • Dynamics: The study of the effect of forces on a moving body.
  • Materials Science: The study of the structure of materials on a molecular and atomic level.
  • Thermodynamics: The study of heat and its relationship to pressure, density, temperature and work.
  • Fluid Dynamics: The study of liquids and gases in motion.
  • Heat Transfer: The study of the heat transfer process from one body to another.
  • Structural Analysis or Mechanical Design: The study of the effects of loads on a body and its components.
  • Kinematics and Dynamics of Machinery: The study of a moving body with and without reference to the cause of its motion.
  • Electrical Circuits: The study of amperage or current flow in a closed loop consisting of voltage sources and resistors.
  • Instrumentation and Controls: The study of instruments for measurement and controls in modern systems.
  • Mechanical Vibrations: The study of machine vibrations.
  • Computer Science: The study of the latest computer language and computer-aided design (CAD).

Before these courses can be taken, however, the aspiring mechanical engineer must develop a thorough understanding of the fundamental subjects of calculus, differential equations, partial differential equations, calculus-based physics and chemistry.

All mechanical engineering programs require multiple semesters or quarters of these subjects. These subjects lay the foundation to the understanding of the core curriculum. The mechanical engineering student cannot master the core mechanical engineering concepts without mastering the fundamentals.

Read More: wireless sales consultant

Wednesday, March 3, 2021

Real Life of Materials Science Engineers


Beyond these statistical realities and potential however, many within the fields of Materials Science and Engineering express substantial personal and professional satisfaction with their work and career. Bringing together the applicable skills of dynamic critical thinking and problems solving with those of analytical research and scientific endeavor, the challenges posed to the working professional often result in an enhanced satisfaction with successful end results in respect to projects and ventures undertaken. In seeing the final real world applications to their research, development and testing of new and existing materials, Material Engineers often find themselves on the cutting edge of scientific discovery and advancement.

Taking for example, the case of NASA engineer Clara Wright, the pliable skills learned while studying Material Science and Engineering have given Ms. Wright substantial personal fulfillment, in addition to her remarkable career. Being possessed since her youth with an interest in puzzles and problem solving, Wright gravitated naturally towards the field of material science and engineering. Upon completing her degree, Wright first entered the field of bio-medical research, assisting with the design and development of prosthetic limbs for amputees. Later, Wright took a position at NASA working as a materials engineer, studying materials in use by the space program. In July of 2014, Wright was profiled for NASA’s website, in an effort to highlight both her contributions to the space program, while also the interest and dedication to Material Science and Engineering which brought her to work there.

"I'm very passionate about being a materials engineer," Wright said. "It’s a very fulfilling career particularly at Kennedy because every investigation is unique. It is greatly gratifying to say that I am one of a handful of people in the world who get to work on hardware that is going to the International Space Station, has been in the vacuum of space or is part of the launch structures."

Read More: wireless sales consultant

What is the focus of a Marine Engineering degree?


During the course of obtaining a marine engineering degree, you will learn how to apply the principles of engineering to systems that help seafaring vessels, docks and other aquatic entities function. This may include designing and evaluating propulsion and power supply systems to assist communication and navigational devices, engines, foul-weather gear and many other types of marine tools. Becoming a marine engineer takes time, patience, dedication, and commitment to your studies.

You can study for a bachelor's, master's or Ph.D. in marine engineering, which will prepare you to design and evaluate sea-faring vessels and other equipment while on land. Alternatively, you can enroll in the United States Merchant Marines Academy and learn how to operate and care for a ship’s equipment with one of three degrees: Marine Engineering, Marine Engineering Systems, and Marine Engineering.

While every engineering school has slightly different requirements, in general, undergraduate applicants should have completed high school with excellent advanced science and math course grades. High ACT or SAT test scores are also helpful when applying for a program in marine engineering.

Read More: wireless advocates job description

Monday, March 1, 2021

Working Life of an Industrial Engineer


Depending upon the specific tasks they are performing, industrial engineers work both in offices and in the settings they are working to improve. If they are observing problems, for instance, they may watch workers assemble parts in a factory, or staff performing their functions in hospitals. When solving problems, industrial engineers may work in an office at a computer, where they examine data that they themselves, or others, have gathered. Industrial engineers may need to travel for work in order to observe processes and make assessments in various work settings. In 2012, the industries that employed the greatest number of industrial engineers were: aerospace product and parts manufacturing, machinery manufacturing, architectural, engineering, and related services, motor vehicle parts manufacturing, and management of companies and enterprises. Industrial engineers need good interpersonal skills to be able to work alongside other professionals and serve as a bridge between the technical and business sides of an organization.

Recently, the University of Chicago conducted a study to obtain information about job satisfaction in the United States. Although job and career are not the only determinants of overall happiness and life satisfaction, they do contribute substantially to an individual’s sense of well-being. According to the study, the occupation “industrial engineer” was among the top ten careers associated with general happiness. In fact, it ranked ninth. When compensation for these top-ten careers was examined, “industrial engineers” ranked third.
When looking at the reported reasons for happiness, i.e. creativity, use of expertise, helping others, it is easy to understand why industrial engineers ranked in the top ten careers for happiness. IEs are trained to use quantitative and non-quantitative expertise in creative was to improve processes and products while making jobs easier and more efficient.

Read More: wireless sales representative target

Main Focus of an Environmental Engineer


Engineers are the world's lifeline to everything that defines our civilization, not unlike the Romans with their aqueducts, toilets, and sewer systems. Environmental engineering is a critical career field that helps keep our planet inhabitable and sustainable.

If you are considering embarking on a career dedicated to environmental engineering, there are many facets of your education that will come into play, and the more you know now, the better engineer you will be.

Your role as an environmental engineer will involve providing safe and plentiful water supplies, developing systems for reducing pollutants in air, water and hazardous wastes; anticipating the effects of contaminants' transport, and correcting improper disposal situations where hazardous materials are concerned.

As an environmental engineer, you will seek solutions to public health threats, improvements in and adherence to the law surrounding sanitation and construction, waste disposal, recycling, industrial hygiene, and environmental sustainability.

Read More: average salary of it help desk technician

Software Engineering Degrees

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a...