Tuesday, March 31, 2020

Computer Engineering Degrees

Computer Engineering Degrees

Most people own or have ready access to a personal computer. These marvels of modern technology have revolutionized everything from the way we get our news to how we communicate with friends and relatives to how we entertain ourselves. However, the traditional PC or laptop is only one type of computer. Virtually every modern machine and process is computer-controlled. Some computers are tiny, as in the smallest cell phones and MP3 players.
Other computers are actually massive networks of thinking machines, working on terabytes of data and cranking out billions of calculations per second. The common factor making these machines possible is the Computer Engineer. Computer Engineering differs from Software Engineering and Computer Science in that it focuses on the actual hardware that’s responsible for performing the work. Software is the set of instructions used by a computer to get work done.
Without Computer Engineers designing the hardware platform it runs on, software would be so many useless bits of data. While they need to know the principles of software operation, Computer Engineers are responsible for designing the components of a computing system. Whether that computer is in the Stealth Bomber or under your car’s hood, all computers have similar components and functions, varying mostly in size, shape and application.
Computer Engineers design everything from the Central Processing Unit to primary and secondary memory storage to input and output methods. Even if they are using off-the-shelf components, they’re responsible for making sure the integration works flawlessly.

Monday, March 30, 2020

Network Services

Network Services

Computer systems and computerized systems help human beings to work efficiently and explore the unthinkable. When these devices are connected together to form a network, the capabilities are enhanced multiple-times. Some basic services computer network can offer are.

Directory Services

These services are mapping between name and its value, which can be variable value or fixed. This software system helps to store the information, organize it, and provides various means of accessing it.
  • Accounting
    In an organization, a number of users have their user names and passwords mapped to them. Directory Services provide means of storing this information in cryptic form and make available when requested.
  • Authentication and Authorization
    User credentials are checked to authenticate a user at the time of login and/or periodically. User accounts can be set into hierarchical structure and their access to resources can be controlled using authorization schemes.
  • Domain Name Services
    DNS is widely used and one of the essential services on which internet works. This system maps IP addresses to domain names, which are easier to remember and recall than IP addresses. Because network operates with the help of IP addresses and humans tend to remember website names, the DNS provides website’s IP address which is mapped to its name from the back-end on the request of a website name from the user.

Thursday, March 26, 2020

Internet of Things benefits to organizations

Internet of Things benefits to organizations


The internet of things offers several benefits to organizations. Some benefits are industry-specific, and some are applicable across multiple industries. Some of the common benefits of IoT enable businesses to:

monitor their overall business processes;
improve the customer experience (CX);
save time and money;
enhance employee productivity;
integrate and adapt business models;
make better business decisions; and
generate more revenue.
IoT encourages companies to rethink the ways they approach their businesses and gives them the tools to improve their business strategies.

Generally, IoT is most abundant in manufacturing, transportation and utility organizations, making use of sensors and other IoT devices; however, it has also found use cases for organizations within the agriculture, infrastructure and home automation industries, leading some organizations toward digital transformation.

IoT can benefit farmers in agriculture by making their job easier. Sensors can collect data on rainfall, humidity, temperature and soil content, as well as other factors, that would help automate farming techniques.

The ability to monitor operations surrounding infrastructure is also a factor that IoT can help with. Sensors, for example, could be used to monitor events or changes within structural buildings, bridges and other infrastructure. This brings benefits with it, such as cost saving, saved time, quality-of-life workflow changes and paperless workflow.

Read More: how does a network work

Wednesday, March 25, 2020

Vehicle Engineering Degree and Career Outlook

Vehicle Engineering Degree and Career Outlook

Very few U.S. universities offer official degrees in vehicle engineering, and thus most practitioners in the field elect to study mechanical engineering. A Bachelor’s Degree is required as a minimum qualification for securing employment in the field. Many mechanical engineering programs integrate courses in automotive electronics and power systems into their curriculum. Students aspiring for the academic certification should demonstrate a strong interest and capacity in math and science courses such as calculus, physics, and more importantly computer science, as most vehicles and systems are based on digital platforms. Students who embark upon advanced education at the graduate level have the skills and training to thrive in the global marketplace. Professionals with Master’s degrees and/or Ph.D.’s have focused their efforts on hybrid electric automotive technology and systems cases. Furthermore, they have the ability to assume senior executive positions within their firms, while others branch out to begin their own ventures. Engineers with this level of academic and professional experience also teach college students. Other skills that have proven to serve aspiring candidates well include strong problem solving skills, superb written and oral communication capacities, multitasking, budget management, team-building and social skills, as well as independent judgment.
Professionals in this field have been integral in developing the hybrid electric car technology that has transformed the automotive industry. The American Society of Mechanical Engineers (ASME) provides a bevy of resources for current and aspiring engineers in the field. Moreover, the National Society of Professional Engineers (NSPE), furnish professionals and students with transformative knowledge and tools to embolden their ability to thrive as technology and techniques evolve. There are regular updates on news in the industry, events, seminars and educational conferences to enhance and develop the skills of the community. In addition, professionals capitalize on networking and mentoring opportunities as well as recruiting efforts from major corporations like Ford Motor Co. and General Electric. Based on data from the U.S. Bureau of Labor Statistics (BLS), the employment opportunities for these engineers is expected to grow through the year 2020 by 9 percent. The U.S. cities with the most opportunities and highest salaries for these professionals are Detroit and Auburn Hills, Michigan. The states of California and Texas are the next two locations with the greatest career prospects. According to statistics at O*Net salary data, these engineers earned a median salary of $82,100.

Tuesday, March 24, 2020

Software Engineering Career and Work Nature

Software Engineering Career and Work Nature

Software Engineering degrees are available at the undergraduate, master’s, and doctorate (PhD) levels. As you move up in a Software Engineering career, increasing your education level will allow you to tackle ever more complex systems. At the pinnacle of Software Engineering are people that design the systems behind well-known technological marvels from the Space Shuttle to Google’s databases.

Prerequisites

Most colleges require similar courses as prerequisites for their Software Engineering programs. You’ll normally be expected to study mathematics up through Calculus, basic computer programming, and cross-discipline engineering basics. You’ll also take courses in computer algorithms and system documentation methods prior to moving on to the core Software Engineering program.

Undergrad

Once your undergraduate prerequisites are met, you start taking classes in Software Engineering. This is where you gain cutting-edge expertise in skills like requirements identification, system design, software integration and software testing methodologies. During this coursework, you’ll learn how modern software systems are designed and implemented.
There are an incredibly complex number of variables when engineering software components, and a Software Engineering degree provides the educational foundation you need to be productive in the field.
There are numerous avenues for studying Software Engineering. Virtually every major university offers this as an undergraduate major, and many larger colleges offer Master’s and PhD programs as well. You can also get a Software Engineering degree through many of the top online colleges.
Since a lot of the software work being done is on the Internet and mobile devices, studying Software Engineering online can be a flexible and effective method for pursuing your education.
An undergraduate Software Engineering degree is normally a 4-year program. There are some colleges where this can be accelerated, and others that demand enough coursework to take up a fifth year. A Master’s in Software Engineering will usually take 2 years to complete if you’re able to go full time, and your doctorate degree will take as long as 3 years to finish due to the writing and research involved at that level.

Monday, March 23, 2020

Mining and Geological Engineering

Mining and Geological Engineering

Mining and geological engineering focuses primarily on the study and design of creating safe and effective means to extract metals and minerals for industrial, commercial and scientific purposes. Requiring education and understanding not only of mining principles and practices, engineers in this field are also expected to have an advanced and dynamic understanding of geological sciences, such as soil and mineral composition, surveying, prospecting and exploratory geological research. In addition to extracting the more conventional materials such as oil, precious and industrial metals and rarer gems and materials, many new advancements in information technology have expanded the role of geological engineering to search and mine for other materials, such as the dozens of special minerals and materials used in computer, tablet and smart phone construction.
At EducatingEngineers, we want you to understand the complexities of engineering careers and what it takes to succeed in your education. Please read the information below to learn more. And contact the schools in our directory to get started!
Working in the field
Employed by governments, major corporations, non-profit organizations and scientific/academic research institutions, geological engineers play pivotal roles in everything from industrial production of materials and energy, to advancing scientific understanding of the material composition of the Earth. Because of the numerous and varied functions for geological engineering and the substantial technological advancements made in the field itself, the role of the engineer in respect to mining and geological research continues to evolve, finding new and interesting applications for the science with each passing year.
Requiring a minimum of a bachelor’s degree from an accredited college or university, the licensing requirements for geological and mining engineering vary by state. Specific degree programs for aspiring geological and mine engineers include Geology, Geophysics, Geological Engineering, Mining Engineering, Mineral Preparation Engineering and Social Geology, among many others, and range from undergraduate Bachelors programs to advanced graduate and post-graduate programs. In addition to materials mining and extraction, additional studies and industry focuses include ecological impact research, which measures broader environmental and ecological effects of mining operations, social geological impact research which focuses on both the sociological hazards and benefits to geological or mining efforts and discovery oriented exploration, studying geological formations below the Earth’s surface so as to refine the broader understanding of the planet’s composition. Regulated by the Mine Safety and Health Administration (MSHA,) the field of geological and mine engineering is one with an intense focus on hazard awareness and occupational safety.

Friday, March 20, 2020

Marine Engineering Career Outlook

Marine Engineering Career Outlook 

Many schools offer online marine engineering degrees. When making your selection, ensure that your school of choice offers programs accredited by the Accreditation Board for Engineering and Technology.
A four-year bachelor of science degree is sufficient to cover the basic concepts of marine engineering. Those wishing to learn more about a specific facet of the profession are advised to earn a masters (one to two more years), and possibly later a PhD (time varies widely). Certain colleges offer combined masters to PhD programs that help students earn post-graduate education degrees faster.
It should be noted that after finishing a bachelor’s degree, marine engineers typically take several U.S. Coast Guard licensing exams. After successfully passing the Third Assistant License Exam, engineers gain more experience before taking the Second Assistant license. After even more time in the field, marine engineers take the First Assistant license, followed by the Chief Assistant license.
Marine engineering graduates have a number of career options. They may choose to work as naval combat or propulsion engineers or marine equipment specialists. Becoming a marine systems, marine structural, or ship’s engineer is also a possibility. Others may find the job duties of a marine equipment specialist or hydrographic surveyor more to their liking.
Many companies hiring freshly graduated marine engineers provide hands-on training using new employees’ academic knowledge as a foundation. In general, undergraduate students are expected to take advantage of marine engineering-related work-study jobs and internships to improve their likelihood of being hired post-graduation.
Individuals with a masters or PhD in Marine Engineering usually aim for jobs in government or academia. Working for private design, engineering and architectural firms is also a popular choice. Potential jobs for those holding advanced Marine Engineering degrees include:
  • Engineering Professor
  • Submarine Engineer
  • Shipyard Project Engineer
  • Marine Operations Manager

Thursday, March 19, 2020

Computer Engineering Career

Computer Engineering Career

Most people own or have ready access to a personal computer. These marvels of modern technology have revolutionized everything from the way we get our news to how we communicate with friends and relatives to how we entertain ourselves. However, the traditional PC or laptop is only one type of computer. Virtually every modern machine and process is computer-controlled. Some computers are tiny, as in the smallest cell phones and MP3 players.
Other computers are actually massive networks of thinking machines, working on terabytes of data and cranking out billions of calculations per second. The common factor making these machines possible is the Computer Engineer. Computer Engineering differs from Software Engineering and Computer Science in that it focuses on the actual hardware that’s responsible for performing the work. Software is the set of instructions used by a computer to get work done.
Without Computer Engineers designing the hardware platform it runs on, software would be so many useless bits of data. While they need to know the principles of software operation, Computer Engineers are responsible for designing the components of a computing system. Whether that computer is in the Stealth Bomber or under your car’s hood, all computers have similar components and functions, varying mostly in size, shape and application.
Computer Engineers design everything from the Central Processing Unit to primary and secondary memory storage to input and output methods. Even if they are using off-the-shelf components, they’re responsible for making sure the integration works flawlessly.
Read More: systems architect

Wednesday, March 18, 2020

Aerospace Engineering Degrees

Aerospace Engineering Degrees

Aerospace engineers research, analyze, design, synthesize, develop and test aircraft, spacecraft and weapons. Aerospace engineers who focus on aircraft are called aeronautical engineers; those who concentrate on spacecraft are called astronautical engineers.
They are essentially concerned with the aerodynamic properties of flight vehicles, such as airfoil, control surfaces, lift and drag.
Aerospace engineer can specialize in areas such as structural design, propulsion, navigation, guidance and control systems, communications or defense systems.
They may also specialize in a particular type of equipment, including commercial and military planes and jets, helicopters, space shuttles, satellites, space vehicles, missiles or combat aerial vehicles.
Aerospace engineers can develop special expertise in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, avionics or guidance, and control systems.

Tuesday, March 17, 2020

Communication Services

Communication Services

  • Email
    Electronic mail is a communication method and something a computer user cannot work without. This is the basis of today’s internet features. Email system has one or more email servers. All its users are provided with unique IDs. When a user sends email to other user, it is actually transferred between users with help of email server.
  • Social Networking
    Recent technologies have made technical life social. The computer savvy peoples, can find other known peoples or friends, can connect with them, and can share thoughts, pictures, and videos.
  • Internet Chat
    Internet chat provides instant text transfer services between two hosts. Two or more people can communicate with each other using text based Internet Relay Chat services. These days, voice chat and video chat are very common.
  • Discussion Boards
    Discussion boards provide a mechanism to connect multiple peoples with same interests.It enables the users to put queries, questions, suggestions etc. which can be seen by all other users. Other may respond as well.
  • Remote Access
    This service enables user to access the data residing on the remote computer. This feature is known as Remote desktop. This can be done via some remote device, e.g. mobile phone or home computer.

Monday, March 16, 2020

Computer Network Architect Job Specifications

Increase the likelihood of receiving competitive applications for an open position by carefully crafting the list of required skills in your computer network architect job description. It is a good idea to set forth the minimum requirements and then provide a few preferred qualifications that could set an exceptional applicant apart.
Make sure all of the listed requirements correspond to a candidate’s prospects for success in this position. Work with other computer network or information technology professionals at your company to ensure that the skills you list in the computer network architect job description fill gaps in the existing staffing structure.
Distinguishing baseline qualifications from preferred skills can keep this listing from discouraging qualified applicants who might have equivalent or other useful kinds of experience or training. You should be clear about both categories of skills in order to encourage jobseekers to describe their most relevant skills clearly on their resume.
Here are a few computer network architect job specifications that you might consider:
  • Expert enterprise user with certifications in major network administration software and utilities
  • Bachelor’s degree in relevant area with at least 3 years of experience; master’s degree preferred
  • Background in network security measures including audits, probes and firewalls
  • Experience implementing and maintaining networks for an organization of similar size

Thursday, March 12, 2020

Automotive Engineering Master’s Degree

Automotive Engineering Master’s Degree

A master's degree in automotive engineering is not necessary to work in the field, but such a degree will give students specialized automotive engineering knowledge and skills. Moreover, master's degree programs offer research opportunities for students. It takes about two years to complete a master's degree program in automotive engineering.
Studies include:
  • Design and manufacturing
  • Energy and environment
  • Materials
  • Noise and vibration
  • Powertrain
  • Dynamics and control
  • Electronics and computer software
  • Ergonomics
To earn a master's degree, the student must satisfy the university's thesis requirements and/or complete a final project.
The few universities that offer online automotive engineering degrees do so only at the master’s degree level. The student gains only theoretical knowledge from an online master's degree. The student does not receive any hands-on experience, which can be important to landing a job in automotive engineering. The online programs assume that the student received hands-on experience while obtaining a bachelor's degree. Therefore, online master's degree programs in automotive engineering are meant for the working automotive engineer.

Tuesday, March 10, 2020

Acoustic Engineering Career Outlook

Acoustic Engineering Career Outlook

These types of professionals may be asked to perform a variety of duties based on the industry they choose to employ their skills and knowledge. In the construction industry, engineers may execute sound and environmental evaluations on a building to ensure it meets codes and regulations. They may examine how alterations in the design of a structure may impact sound quality. In an industrial setting, these professionals utilize digital hardware and software to determine means for lessening sound disruptions in a work facility, while inquiring into how vibrations impact factory equipment or transportation structures such as a bridge or automobile. In the entertainment sphere, these professionals often work to optimize sound quality in recording studios and in live performance venues, evaluating how structures, materials and digital equipment and software enhance sound quality. Often, bioengineering firms seek these professionals to address how ultrasound and other forms of technology provide the best treatment options for patients under a medical professional’s care. Firms across the world like Sony, LA Live, the NFL, Bose, and Honda are a few of the huge companies seeking the services of these acoustic experts.
Not many U.S. universities offer official degrees in acoustic studies, so most professionals complete a Bachelor’s Degree in electrical engineering or a comparable course of study. Most employers do require at least a Bachelor’s as a minimum qualification for entry into the workforce. Many students integrate related acoustic theory courses into their degrees by taking classes in statics, circuits, thermodynamics, sound control, and vibrations, among others. A Master’s Degree may be required to qualify for some positions with a given company. At this level, students complete classes in wave propagation, optics and nonlinear acoustics. The Ph.D. level opens further management opportunities in the field, whereby students will have completed a rigorous academic training rooted in statistical analysis. This level of training opens the door to teaching at universities as well. With an eye to business, students should seek to refine their interpersonal and communication skills as well as their leadership capacities in managing a team of engineers and professionals. They may be asked to negotiate and consult with outside suppliers in managing the lifecycle of a development project.

Thursday, March 5, 2020

Start With Three Layers of that IoT technology stack

Start With Three Layers of that IoT technology stack
  1. The first is the IoT device level; as without accurate sensors, actuators and IoT devices in general, no accurate data and without accurate data no Internet of Things, let alone IoT projects or products/services.
  2. The second is the IoT gateway, which we covered more in-depth but deserves a spot as a layer and certainly in an overview of the IoT device layer with which it is strongly connected and for which is a necessary level towards the next steps of actionable data and business applications or consumer apps and services.
  3. The third is the IoT platform layer where we connect with the business and consumer applications and services, as well as the development of these services and the management and interconnection with the first two layers.
Others include IoT gateways which enable to actually do something with all the data coming from ‘IoT-enabled’ things or connected objects. However, we won’t count IoT gateways as IoT devices as some do; it’s a different IoT technology layer and not even necessarily hardware as we’ll see.

Read More: iot network

Wednesday, March 4, 2020

IoT benefits to organizations

IoT benefits to organizations

The internet of things offers several benefits to organizations. Some benefits are industry-specific, and some are applicable across multiple industries. Some of the common benefits of IoT enable businesses to:

monitor their overall business processes;
improve the customer experience (CX);
save time and money;
enhance employee productivity;
integrate and adapt business models;
make better business decisions; and
generate more revenue.
IoT encourages companies to rethink the ways they approach their businesses and gives them the tools to improve their business strategies.

Generally, IoT is most abundant in manufacturing, transportation and utility organizations, making use of sensors and other IoT devices; however, it has also found use cases for organizations within the agriculture, infrastructure and home automation industries, leading some organizations toward digital transformation.

IoT can benefit farmers in agriculture by making their job easier. Sensors can collect data on rainfall, humidity, temperature and soil content, as well as other factors, that would help automate farming techniques.

The ability to monitor operations surrounding infrastructure is also a factor that IoT can help with. Sensors, for example, could be used to monitor events or changes within structural buildings, bridges and other infrastructure. This brings benefits with it, such as cost saving, saved time, quality-of-life workflow changes and paperless workflow.

Read More: iotsolutions

Tuesday, March 3, 2020

How IoT works

How IoT works

An IoT ecosystem consists of web-enabled smart devices that use embedded systems, such as processors, sensors and communication hardware, to collect, send and act on data they acquire from their environments. IoT devices share the sensor data they collect by connecting to an IoT gateway or other edge device where data is either sent to the cloud to be analyzed or analyzed locally. Sometimes, these devices communicate with other related devices and act on the information they get from one another. The devices do most of the work without human intervention, although people can interact with the devices -- for instance, to set them up, give them instructions or access the data.

The connectivity, networking and communication protocols used with these web-enabled devices largely depend on the specific IoT applications deployed.

IoT can also make use of artificial intelligence (AI) and machine learning to aid in making data collecting processes easier and more dynamic.

The internet of things helps people live and work smarter, as well as gain complete control over their lives. In addition to offering smart devices to automate homes, IoT is essential to business. IoT provides businesses with a real-time look into how their systems really work, delivering insights into everything from the performance of machines to supply chain and logistics operations.

Read More: iot means

Monday, March 2, 2020

Important Internet of Things Components

Important Internet of Things Components

Many people mistakenly think of IoT as an independent technology. Interestingly the internet of things is being enabled by the presence of other independent technologies that make fundamental components of IoT.
The fundamental components that make the internet of things a reality are:
  • Hardware-Making physical objects responsive and giving them the capability to retrieve data and respond to instructions
  • Software-Enabling the data collection, storage, processing, manipulating and instructing
  • Communication Infrastructure-Most important of all is the communication infrastructure which consists of protocols and technologies which enable two physical objects to exchange data

As the telecommunication sector is becoming more extensive and efficient, broadband internet is widely available. With technological advancement, it is now much cheaper to produce necessary sensors with built-in wifi capabilities making connecting devices less costly.
Most importantly, smartphone usage has surpassed all the predicted limits and the telecommunication sector is already working on its toes to keep their customers satisfied by improving their infrastructure. As IoT devices need no separate communication than the existing one building IoT tech is very cheap and highly achievable.

Software Engineering Degrees

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a...